Optimal Edge Deletions for Signed Graph Balancing
نویسندگان
چکیده
The Balanced Subgraph problem (edge deletion variant) asks for a 2-coloring of a graph that minimizes the inconsistencies with given edge labels. It has applications in social networks, systems biology, and integrated circuit design. We present an exact algorithm for Balanced Subgraph based on a combination of data reduction rules and a fixed-parameter algorithm. The data reduction is based on finding small separators and a novel gadget construction scheme. The fixedparameter algorithm is based on iterative compression with a very effective heuristic speedup. Our implementation can solve biological realworld instances exactly for which previously only approximations [DasGupta et al., WEA 2006] were known.
منابع مشابه
On the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملWeighted Optimal Path in Graph with Multiple Indexes
This paper represents a technique for finding optimal paths with multiple indexes in a graph. Up to the present time, all optimal paths have been determined upon one index, say, distance for which an evaluation method exists. In this paper firstly we define multiple indexes for each edge in such a way that anyone can treat the factor for assigning an optimal path. Here, we use Data Envelopment ...
متن کاملSigned analogs of bipartite graphs 1
We characterize the edge-signed graphs in which every 'significant' positive closed walk (or combination of walks) has even length, under seven different criteria for significance, and also those edge-signed graphs whose double covering graph is bipartite. If the property of even length is generalized to positivity in a second edge signing, the characterizations generalize as well. We also char...
متن کاملDirectionally 2-signed and Bidirected Graphs
An edge uv in a graph Γ is directionally 2-signed (or, (2, d)signed) by an ordered pair (a, b), a, b ∈ {+, −}, if the label l(uv) = (a, b) from u to v, and l(vu) = (b, a) from v to u. Directionally 2-signed graphs are equivalent to bidirected graphs, where each end of an edge has a sign. A bidirected graph implies a signed graph, where each edge has a sign. We extend a theorem of Sriraj and Sam...
متن کامل